Thursday, January 15, 2009

15 Gems Of Evolution (Part 2)

2) From water to land

The animals we are most familiar with are tetrapods — they are vertebrates (they have backbones) and they live on land. That includes humans, almost all domestic animals and most of the wild ones that any child would recognize: mammals, birds, amphibians and reptiles. The vast majority of vertebrates, however, are not tetrapods, but fish. There are more kinds of fish, in fact, than all the species of tetrapods combined. Indeed, through the lens of evolution, tetrapods
are just one branch of the fish family tree, the members of which just
happen to be adapted for life out of water.

The first transition from water to land took place more than 360 million years ago. It was one of the most demanding such moves ever made in the history of life. How did fins become legs? And how did the transitional creatures cope with the formidable demands of land life, from a desiccating environment to the
crushing burden of gravity?

It used to be thought that the first landlubbers were stranded fish that evolved to spend more and more time ashore, returning to water to reproduce. Over the past 20 years, palaeontologists have uncovered fossils that have turned this idea upside down. The earliest tetrapods, such as Acanthostega from eastern Greenland around 365 million years ago, had fully formed legs, with toes, but retained internal gills that would soon have dried out in any long stint in air. Fish evolved legs long before they came on land. The earliest tetrapods did most of their evolving in the more forgiving aquatic environment. Coming ashore seems to have been the very last stage.

Researchers suspect that the ancestors of tetrapods were creatures called elpistostegids. These very large, carnivorous, shallow-water fish would have looked and behaved much like alligators, or giant salamanders. They looked like tetrapods in many respects, except that they still had fins. Until recently, elpistostegids were known only from small fragments of fossils that were poorly preserved, so it has been hard to get a rounded picture of what they were like.

In the past couple of years, several discoveries from Ellesmere Island in the Nunavut region of northern Canada have changed all that. In 2006, Edward Daeschler and his colleagues described spectacularly wellpreserved fossils of an elpistostegid known as Tiktaalik that allow us to build up a good picture of an aquatic predator with distinct similarities to tetrapods — from its flexible neck, to its very limb-like fin structure.

The discovery and painstaking analysis of Tiktaalik illuminates the stage before tetrapods evolved, and shows how the fossil record throws up surprises, albeit ones that are entirely compatible with evolutionary thinking.

References
Daeschler, E. B., Shubin, N. H. & Jenkins, F A. Nature 440, 757–763 (2006).
Shubin, N. H., Daeschler, E. B., & Jenkins, F A. Nature 440, 764–771 (2006).
Additional resources
Ahlberg, P. E. & Clack, J. A. Nature 440, 747–749 (2006).
Clack, J. Gaining Ground (Indiana Univ. Press, 2002)
Shubin, N. Your Inner Fish (Allen Lane, 2008)
Gee, H. Deep Time (Fourth Estate, 2000)
Tiktaalik homepage: http://tiktaalik.uchicago.edu
Author websites
Edward Daeschler: http://www.ansp.org/research/biodiv/vert_paleo/staff.php
Neil Shubin: http://pondside.uchicago.edu/oba/faculty/shubin_n.html
2
Gems from the fossil record
3
NATURE|January 2009|doi:10.1038/nature07740
www.nature.com/evolutiongems
© 2009 Macmillan Publishers Limited. All rights reserved

No comments:

Post a Comment